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Monte Carlo Simulations of the Structures and Optical Absorption Spectra
of AlAry Clusters

Jerry A. Boatz and Jeffrey A. Sheehy
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Propulsion Sciences and Advanced Concepts Division
AFRL/PRS
Edwards AFB, CA 93524-7680

and

Peter W. Langhoffr
Department of Chemistry
Indiana University
Bloomington, IN 47405-4001

ABSTRACT
Classical Monte Carlo simulation techniques have been used in conjunction with recently devised
spectral methods for constructing the ground and low-lying excited state potential energy surfaces
of atomic aggregates to predict the structures and optical absorption spectra of AlAry clusters.
The new spectral theory properly accounts for the change in electronic state character
encountered in avoided crossings of diatomic adiabatic states and of the associated AlArn
aggregate states, in contrast to strictly pairwise-additive methods such as the Balling and Wright
model, which constitute special limiting cases of the general spectral theory. The AlArn
simulations seek to understand several key issues regarding the experimental spectroscopic study
of AlAry clusters [James M. Spotts, Chi-Kin Wong, Matthew S. Johnson, and Mitchio Okumura,
Proceedings of the HEDM Contractors' Conference, 5-7 June 1996], such as: (1) the location
of the Al atom (surface or interior), (2) the role of the 4s and 4p states of Alin the putative 3p ->
3d transition, and (3) the origin of the spectral red shifts and splittings as a function of cluster size.
In the case of the Al-Ar diatom, an avoided crossing between the © components of the 3d and 4p
manifolds is expected to play a crucial role in the observed absorption spectra of AlAry clusters.
The (17512p5d4f)/[7s6p4d3ﬂ atomic natural orbital basis set of Widmark et al. (supplemented
with diffuse (1s1p1d1f) functions), in conjunction with internally contracted multi-reference
configuration interaction (MRCI) calculations from 2 [6331] (3e-in 13 orbitals) state-averaged
complete active space reference wavefunction, was used to calculate the Al-Ar diatomic potential
energy curves which correlate with the 3p, 4s, 3d, and 4p atomic states of Al. The Ar-Ar
interaction energies were computed using the “HFDB2” potential of Aziz and Slaman. Detailed
comparisons are made of the calculated spectra with the available measured data.

t AFOSR University Resident Research Professor, 1997/1998.



SPECTRAL THEORY OUTLINE

Diatomic wavefunctions written as superposition of
atomic product states (direct product of Al and Ar atomic

states):
Al Ar

(3P, 4S, 3D, 4P} ® {150}

@ = { 3P+1*'So, 3P0‘150,3P-1'1SO,4S‘1So,3D+2']So,---,4P-1'1So}

= { 3P,,, 3P0,3P.1,48,3Du2,.. AP}
g = { X 71, A’Z, B2, ..., (3) 71}

o=UY
Hamiltonian for atomic cluster given by:

H=3HY +H
HY=D'U'EUD

H® = spin-orbit coupling operator for Al atom.




E = diagonal matrix of diatomic interaction
“energies (X,A,B,C,... state energies)
U = unitary matrix which transforms from the
~ diatomic basis to the atomic-product basis.
D = transformation matrix connecting the “rotated”
and laboratory coordinate systems.

Atomic state mixing parameters Ui] obtained from
eigenvectors of the diatomic and “spectral-product”
transition moment matrices: U = Uy (Usp)‘, where Uq and
U,, obey the following:

M = (Ud)t W(R) Ugq
and

7\'sp = (Ijsp)t HO(R -=> OO) Usp

This is “exact” only in the case where Ag= M-



AlAr MRCI Potentials

R (Angstroms)
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CONCLUSIONS

1. Alis located on surface of clusters.

7. For AlAr, absorptions in the 311-306 nm range are
due primarily to 3p -> 3d transitions. Absorption peaks at
305 and 292 nm are due to 3d -> 4p transitions.

3. In the B&W limit, the 3d-4p transitions are missing in
the simulated spectra due to improper description of the

avoided crossing between the 3d,4p 11 states.

4. Simulated spectra do not reproduce observed red-shift
in 3p -> 3d absorptions. This may be due to missing non-
additive effects in the ground state potential energy

- surface of the clusters.
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